The Development of Models for Carbon Dioxide Reduction Technologies for Spacecraft Air Revitalization
نویسندگان
چکیده
Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. NASA is currently exploring the Sabatier reaction, the Bosch reaction, and coelectrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. All three techniques have demonstrated the capacity to reduce CO2 in the laboratory, yet there is interest in understanding how all three techniques would perform at a system level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily rescaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental efforts. Comparison to experimental data is provided were available for verification purposes.
منابع مشابه
Modeling and Comparison of Optimized Isotherm Models for H2, N2, CO, CH4 and CO2 Adsorption Using Cuckoo Search Optimization Algorithm
In this study, modeling of hydrogen, nitrogen, carbon monoxide, methane and carbon dioxide sorption on UTSA-16 framework extrudates in the pressure swing adsorption process was carried out. The pure gas adsorption of these gases at the pressure range (0 to 80) bars at (298, 313, and 338) K have also been measured in a fixed bed. Langmuir, Toth, Sips, UNILAN, Virial and Dubinin-Astakhov adsorpti...
متن کاملCO2 Removal from Air in a Countercurrent Rotating Packed Bed, Experimental Determination of Height of Transfer Unit
Carbon dioxide capture is a key issue in climate change mitigation. For decades the removal of carbon dioxide has been an essential step in many industrial processing operations such as the synthesis of ammonia, natural gas purification, and oil refining. In this study, a rotating packed bed has been designed for absorption of carbon dioxide from an air stream. The rotating packed bed is a comp...
متن کاملStatistical trend analysis and forecast modeling of air pollutants
The study provides a statistical trend analysis of different air pollutants using Mann-Kendall and Sen’s slope estimator approach on past pollutants statistics from air quality index station of Varanasi, India. Further, using autoregressive integrated moving average model, future values of air pollutant levels are predicted. Carbon monoxide, nitrogen dioxide, sulphur dioxide, particu...
متن کاملCorrelation of air pollutants with land use and traffic measures in Tehran, Iran: A preliminary statistical analysis for land use regression modeling
Land use regression (LUR) models have been globally used to estimate long-term air pollution exposures. The present study aimed to analyze the association of different land use types and traffic measures with air pollutants in Tehran, Iran, as part of the future development of LUR models. Data of the particulate matter (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) were extracted from...
متن کاملThe effect of COVID-19 lockdown on the air environment in India
COVID-19 is a huge tragedy for the world community. Everything in the world is affected due to this pandemic right from economy to resources where the economy of major countries of the world are facing recession and resources are surplus with no takers at all. The measures to contain COVID-19 pandemic include lockdown, social distancing, isolation, and home quarantine. Lockdown adopted by the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012